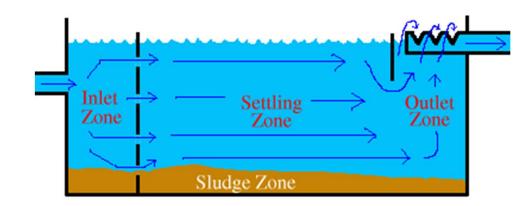


Chain and Scraper Rectangular Clarifiers

Design and Component Details


Introduction - Agenda

- Clarifier Basics
- Circular vs Rectangular
- History
- Application, Designs & Sizing
- Component Details

Clarifier Basics

- Develop quiescent conditions in tank
- Allow settleable solids to separate from liquid (Stokes Law)
 - Solids Settle = Sludge
 - Solids Float = Scum
- Continuous mechanism required to convey sludge away for removal

YouTube Graphic

Clarifier Basics – Primary Clarifiers (Municipal Wastewater)

Hydraulic Settling

- § Removes Settleable Solids (90-95%)
- § Removes TSS (~40-55%)
- § BOD₅ removal (~25-50%)
- § Suggested loading rate = 750-1200 gpd/ft² [1.27- 2.04 m/hr] for typical municipal wastewater at average design flow.

Sludge Loadings/Concentration

§ Typically 3-5% solids

Clarifier Basics – Secondary Clarifiers (Activated Sludge)

Hydraulic Settling

- § Remove suspended solids generated during biological treatment.
- § Suggested loading rate = 500-800 gpd/ft² [0.60-1.10 m/hr]
- § Up to 85-90% removal of suspended solids in secondary tanks

Sludge Loadings/Concentration

§ Typically 1-1.5% Settled Sludge Concentration after the activated sludge process

Circular vs Rectangular

Circular Clarifiers

- Tangential arrangement
- Less sensitive to surge flows
- Lower operation and maintenance costs

Engineer's preference (typically)

Circular vs Rectangular

Rectangular Clarifiers

- Common wall construction
- Occupy less space when multiple units used
- Provide longer travel distance for settling to occur
- Less short circuiting
- Better skimming

Confidential | Page 8 | 2018 Evoqua Water Technologies

- Original equipment by Chain Belt Co. of Milwaukee in 1890s
- Chain Belt became Rex Chain Belt
 - First chain & scraper installation in 1929
- Name changed to Rexnord
- 1973 Envirex Products environmental products division of Rexnord moved to Waukesha, Wisconsin
- Envirex acquired by USFilter
- USFilter acquired by Vivendi/Veolia
- Acquired by Siemens
- 2014 Siemens divested water group and purchased by AEA Investors, renamed Evoqua

Confidential | Page 9 ©2018 Evoqua Water Technologies

History continued

- Longest history & most experience
- Over 10,000 mechanisms installed in more than 1,000 sites around the globe
- Broader catalog of components, capabilities and applications than any other manufacturer
- Track record and capabilities to manage large projects

History continued

FMC Envirex®

1929	- Industry's first chain and flight sludge collector (Rex)
1976	- Industry's first non-metallic chain and flight sludge collector

1976 - Sigma Flight

1980 - Polyurethane Sprockets

1981 - Split Sleeve Bearing

1985 - Sigma+ Flight

1986 - Rex Loop Chain

1990 - Flight Monitoring System

1992 - Brush cleaning system for rectangular stacked sedimentation basins

1993 - Kevlar® coated stainless steel pin for Rex Loop Chain

1995 - Polyurethane ball for bearings

1996 - C-rail wear strip

1996 - J-Track return system

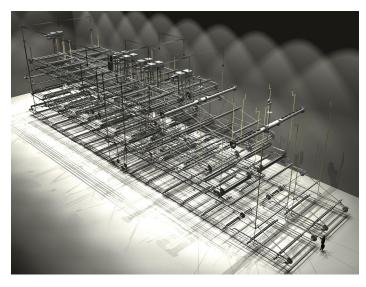
1997 - Stainless Steel J-Track system

1997 - Molded UHMW Wear Shoes

1998 - Diamond Flight

2001 - Press Lock™ Chain

2012 - One-piece Fiberglass Headshaft



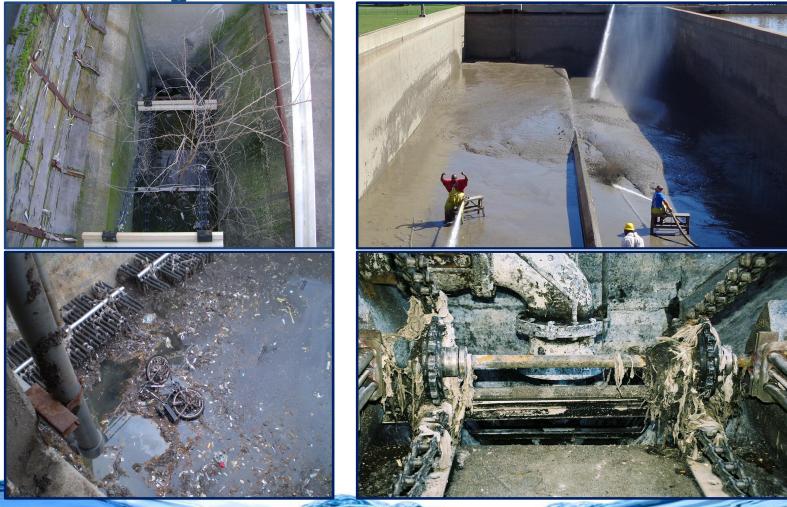
Capabilities & Experience – Large Project & Stacked Clarifiers

- ★ Boston, Massachusetts Deer Island
 Philadelphia, Pennsylvania DELCORA
 Detroit, Michigan
 Denver, Colorado
 Phoenix, Arizona
 San Francisco, California
 Los Angeles, California Hyperion
 Rio de Janiero, Brazil Guandu
 Chung Chun, China
 Chung Chao, China
- ★ Selectar, Singapore
- ★ Ulu Pandan, Singapore
- ★ Changi, Singapore Higasinada, Japan Pa-Lee, Taiwan
- ★ Hong Kong Stonecutters Island
- ★ Cleveland, Ohio Nottingham WTP

412 mechanisms

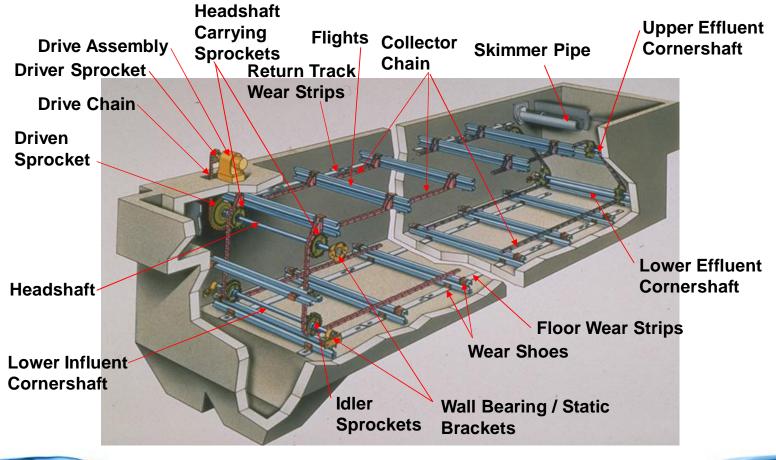
172 mechanisms 72 mechanisms 62 mechanisms 102 mechanisms 48 mechanisms 48 mechanisms 24 mechanisms 36 mechanisms 60 mechanisms 68 mechanisms 32 mechanisms 262 mechanisms 96 mechanisms 64 mechanisms 36 mechanisms 28 mechanisms

★ Stacked Clarifier Project



How is Equipment Sized?

- Type of application
 - Primary, Secondary, Water Treatment
- Tank Dimensions
- Mechanism calculations and loads
- Determines component selection
- Shaft sizing
- - Drive torque requirements



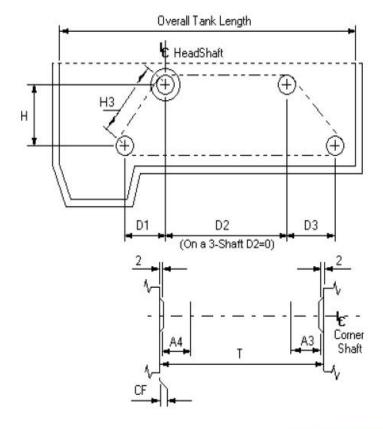
Unforeseen Loadings...

Rectangular 4-shaft Sludge Collector

Design Program Input Sheet

Project Name: 2033/000772.P.01

Location: Detroit, MI Long Coll. 1-8


User: CC Date: 10/24/16

Collector Dimensions

D1 = -1 H1 = 190 D2 = 2977 A1 = 25.5 D3 = 134.5 A2 = 27.5 H = 136.125 A3 = 25.5 T = 192 A4 = 25.5

Flight Information

CF - Corner Fill = 6
Z - Counterweight = 0
S2 - Flight Spacing = 10
S4 - Flight Speed = 2

Input

Design Program Input Sheet Cont.

Design Program Output

Shaft diameters

Total collector chain pull

Drive chain pull -

Torque at reducer output shaft

Date: 10/24/16 Wet Tank Output

Shaft Selection

Shaft	Selected Diameter	Allowed Deflection	Actual Deflection	Actual Stress			
Headshaft	3.9375	0.528	0.500	6170			
Take Up	3.9375	0.522	0.205	4757			
Effluent Corner	3.9375	0.522	0.197	4727			
Influent Corner	3.9375	0.522	0.427	8509			

Illindent Corner 3.3373	0.322	0.421		6505
Bottom Sprocket Center Distance =		259.2	ft	
Top Sprocket Center Distance =		248.1	ft	
Tank Width =		16.000	ft	
Height of Collector =		11.344	ft	
The Flight Assembly Weight/Foot =		1.75	lbs /	ft ft
The Chain Assembly Weight/Foot =		1.78	lbs /	ft ft
Flight Speed =		2.0	fpm	
Flight Spacing =		10.00	ft	
Average Sludge Load/Foot of Flight =		4.5	lbs / ft	
Sliding Friction (Wear Shoes on Track) =	0.248		
Bearing Friction (at corners) =		0.050		
The Pretension In The Catenary =		190.681	lbs	
Allowable HeadShaft Stress (Shear) =		12500	psi	
Allowable Stress In Other Shafts =		24000	psi	
Allowable Deflection =		1/360	of s	pan
Bending Moment Factor =		1.500		
Torsional Moment Factor =		1.000		
Total Collector Chain Tension =		2532	Ibs	Collector Chain Ter
Design Single Strand Collector Chain	Tension =	1823	Ibs	
Drive Chain Tension =		1853	Ibs	Drive Chain Tension
Torque At Reducer Output Shaft (with	1.0 S.F.) =	8384	in-lb	os
Input Horsepower (with 1.0 S.F.) =	0.167	hp		
Head Shaft Drive Bearing Reaction =	115	Ibs		

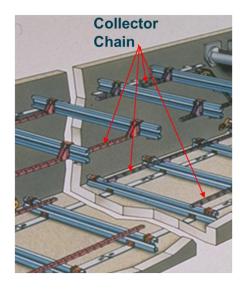
Design Program Output Information

With the program output we can then;

- Choose the correct type of collector chain
- Choose the correct type of drive chain
- Size the gearbox (torque requirement) and motor HP required
- Select the correct flight to handle the width and sludge loading

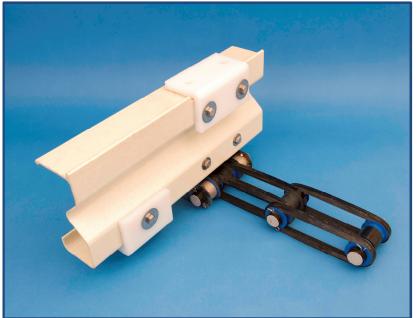
Evoqua Collector Chain Comparison

	NCS720S	HS730	SAV or ENV715
Pitch	6 inch [152.4mm]	6 inch [152.4mm]	6 inch [152.4mm]
Working load	3,400 lbs [1,545 kg]	4,500 lbs [2,045 kg]	5,000 lbs [2,272 kg]
Minimum ultimate tensile strength	7,300 lbs [3,318 kg]	20,000 lbs [9,090 kg]	23,000 lbs [10,454 kg]
Weight per foot	1.3 lb/ft [1.94 kg/m]	1.69 lb/ft [0.77 kg/m]	3.8 lb/ft [5.67 kg/m]
Material of construction	Injection molded acetal thermoplastic	Filament wound composite	Type 403 stainless steel



NCS720S Collector Chain

- Basic applications 95% of our orders are Molded Chain
- Competitors all carry a Molded Chain Press fit pin
 Strongest Molded Chain in Market

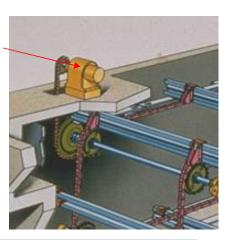


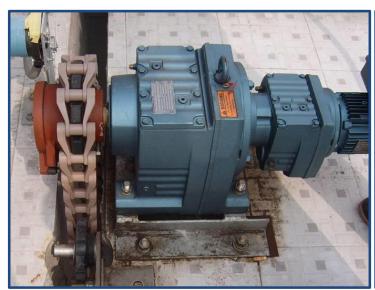
HS730 Loop Chain High Strength Option

- Long Basins
- Heavy sludge loads
- Grit applications
- Cotter pins

Stainless Steel Collector Chain

- Strongest collector chain on the market.
- High grit and heavy loadings
- Cross Collectors
- Cotter pins



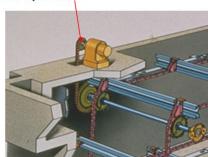



Drive Assembly

Drive Assemblies

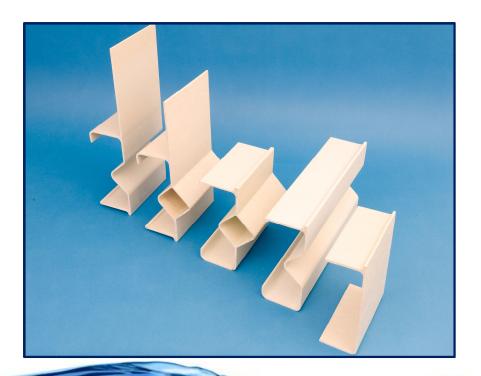
Single Output – Single Mechanism Single Output - Dual Collector thru Jackshaft

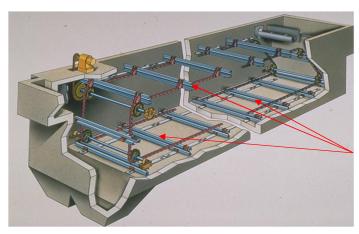
Dual and Triple Output Shaft Drive Assembly



Driver Sprockets

- Cast Iron Shear Pin Driver Sprocket
- Maintenance Free Stainless Steel Shear Pin Driver Sprocket



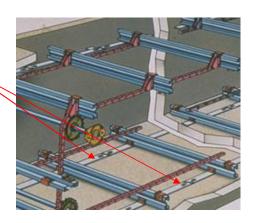


Collector flights

Fiberglass Material

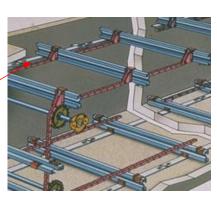
Flights

- Channel up to 15' wide tanks
- Sigma-plus up to 24' wide tanks
- diamond up to 30' wide tanks
- Diamond w/extension 33' wide
- Sigma plus w/extension 28' wide

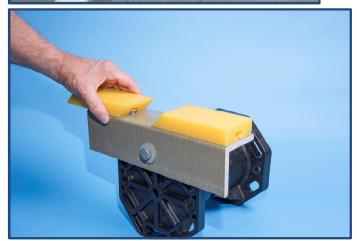


Wear Strips - Floor

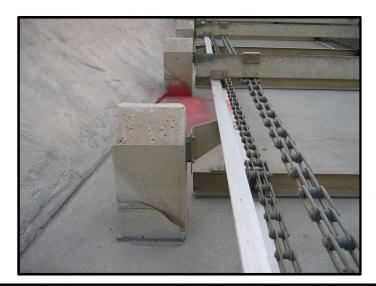
Floor Wear Strips



Wear Strips - Return Track

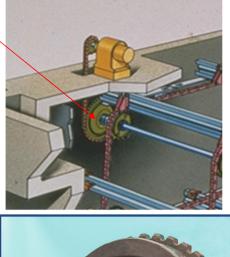


Return Track and Wear Strips



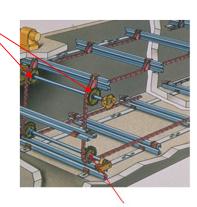
Return Track Angles

- GRP Angle & Non-metallic Brackets
- Stainless Steel Formed
- Stainless Steel Angles


Driven Sprockets

DriveN Sprocket

Polyurethane and Cast
 Steel w/ Bolt on Teeth or
 Cast Nylon w/ Integral Teeth



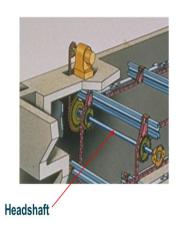
Collector Sprockets

Non metallic materials available

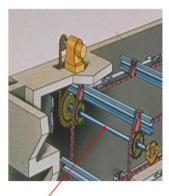
- Polyurethane
- Cast nylon
- 316 SS Hub with 15-5 Participated Hardened bolt on tooth segments
 Cast Hub with UHMW Tooth segments

Carrying Headshaft **Sprockets**

Idler **Sprockets**

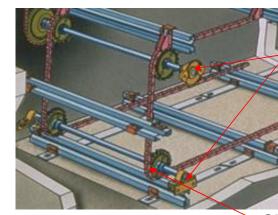


Steel Headshaft Options



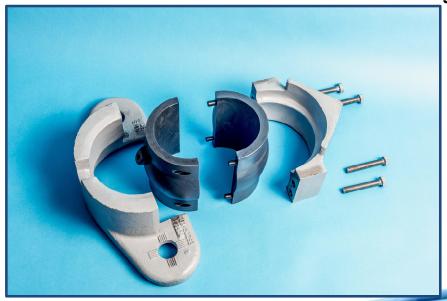
- Stainless Steel
- Carbon Steel
- Torque Tube Design Wide Tanks

Fiberglass (FRP) Headshaft



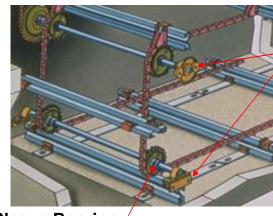
Headshaft *

Bearing Options


- Split Poly Hub Wall Bearing
- Cast Steel & Cast 316 SS housings

Wall Bearing Static wall Brackets

Sleeve Bearing



Confidential | Page 35 018 Evoqua Water Technologie

Bearing Options Cont.

Wall Bearing Static wall Brackets


Scum Removal – Scum Pipe/Tipping Pipe

- Simplest Operation
- Very Effective

Scum Removal – Scum Pipe/Tipping Pipe

Wrap Up

Evoqua offers:

Nearly 100 years of experience in rectangular collectors

More experience and installations than any other manufacturer

Long history of research and innovation

R&D facility

Strong Testing Capabilities and Resources

Proper design, and selection of components

- Engineering Expertise
- Complex Systems Design

Contact Information

Peter Lorenz

Technical Sales Engineer – International Export Evoqua Water Technologies, LLC Waukesha, Wisconsin - USA

Phone: +1 262.521.8543

E-mail: peter.lorenz@evoqua.com

